Dyna (Mar 2021)

Generalization of the pedal concept in bidimensional spaces. Application to the limaçon of Pascal

  • Irene Sánchez-Ramos,
  • Fernando Meseguer-Garrido,
  • José Juan Aliaga Maraver,
  • Javier Francisco Raposo Grau

DOI
https://doi.org/10.15446/dyna.v88n216.88507
Journal volume & issue
Vol. 88, no. 216

Abstract

Read online

The concept of a pedal curve is used in geometry as a generation method for a multitude of curves. The definition of a pedal curve is linked to the concept of minimal distance. However, an interesting distinction can be made for ℝ2. In this space, the pedal curve of another curve C is defined as the locus of the foot of the perpendicular from the pedal point P to the tangent to the curve. This allows the generalization of the definition of the pedal curve for any given angle that is not 90º. In this paper, we use the generalization of the pedal curve to describe a different method to generate a limaçon of Pascal, which can be seen as a singular case of the locus generation method and is not well described in the literature. Some additional properties that can be deduced from these definitions are also described.

Keywords