Applied Sciences (Oct 2023)
Drying Behaviour of Western Hemlock with Schedules Developed for Norway Spruce and Scots Pine
Abstract
Determining moisture content (MC) distribution during the drying of porous materials such as wood is crucial for developing drying schedules and assessing their suitability to achieve optimised processes. This study aimed to determine the causes of the unique drying behaviour and the well-known unusual longer drying time of western hemlock compared to other similar softwoods. In situ X-ray computed tomography (CT) was used to study the evolution of MC in timber during the drying process. The drying behaviour of western hemlock (Tsuga heterophylla (Raf.) Sarg.) was compared with Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) from green to oven-dried condition with industry-proposed drying schedules used for steering a custom-made experimental kiln combined with a CT scanner. CT scanning was performed at 30 min intervals during the complete drying period of 30 h, and the CT images were processed to calculate the MC evolution within the specimen. Western hemlock showed a considerably slower capillary-phase drying and did not go into the transition and diffusion phases when a schedule adapted to pine and spruce drying was applied for its drying. CT images and MC gradient calculations showed a lower drying rate and severe non-uniformity in MC distribution, which could be due to the effect of higher green MC and the presence of wet pockets. Furthermore, the evaporation front at the first 5 h of drying receded faster into the hemlock specimen, and as drying proceeded, it slowed down compared to other specimens.
Keywords