Redai dili (Jun 2024)

Risk Assessment of Extreme Rainfall and Storm Surge Compound Flooding in Coastal Cities under Sea Level Rise Scenarios: A Case Study of Haikou City

  • Wu Guofeng,
  • Liu Qing,
  • Xu Hanqing,
  • Wei Xuchen,
  • Wang Jun

DOI
https://doi.org/10.13284/j.cnki.rddl.20230854
Journal volume & issue
Vol. 44, no. 6
pp. 1025 – 1035

Abstract

Read online

In the context of climate change, the escalating frequency of extreme weather phenomena has exacerbated the severity of compound floods in the southeastern coastal regions of China. Rising sea levels significantly contribute to the inundation of low-lying coastal urban areas. The quantitative assessment of compound flood risk offers scientific support for disaster prevention and reduction in coastal cities and for coastal management initiatives. Using Haikou City as a case study, the daily precipitation and maximum storm surge tide data from 66 typhoons that affected Haikou between 1960 and 2017 were utilized to construct compound flood combination scenarios. Based on the quantitative method of D-Flow FM (Delft3D-FLOW Flexible Mesh) numerical simulation, the potential risks of extreme rainfall and storm surge compound flood disasters under sea level rise scenarios were thoroughly investigated by integrating various scenarios. The findings revealed the following: 1) Storm surge was the primary factor contributing to compound flooding during typhoons, with the estuary of the Nandu River and the northern coast being the most affected. 2) In the scenario of maximum rainfall and storm surge combination, the inundation area of Haikou is about 148 km2, which is approximately 15 times larger than the minimum rainfall and storm surge combination scenario. Moreover, in more than half of the inundated areas, the water depth exceeds 1 meter. 3) Under extreme rainfall and storm surge compound scenarios, the areas encompassing Haidian Island, Xinbu Island, and Jiangdong New Area were significantly affected by sea level rise. By 2100, the total flooding area is projected to reach about 203 km2 under the RCP8.5 scenario. Sea level rise significantly amplifies urban flood risks, implying that coastal cities are poised to encounter heightened threats and manage future challenges. Through comprehensive comparisons of multiple rainfall and storm surge compound flooding scenarios under sea level rise, the temporal and spatial characteristics of the compound flooding risk were systematically evaluated. The results provide an important scientific basis for sustainable regional development, effective management, and prevention.

Keywords