Saudi Dental Journal (Nov 2023)

Effect of controlled surface roughness and biomimetic coating on titanium implants adhesion to the bone: An experiment animal study

  • Mohamed Ahmed Alkhodary

Journal volume & issue
Vol. 35, no. 7
pp. 819 – 826

Abstract

Read online

Introduction: Laser micromachining of titanium and its alloys can create micro-grooves with sizes similar to cell diameter of about 10 μm. Its coating with arginine-glycine-aspartic acid (RGD) may enhance cellular spreading and adhesion. This study aimed to evaluate the effect of laser micro-grooving and laser micro-grooving combined with RGD coating on the strength of the dental implants/bone interface using destructive mechanical pullout testing in experimental animals. Materials and methods: In this study, the test groups consisted of 1.5-mm diameter, 5-mm long laser-grooved and laser-grooved/RGD coated titanium alloy (Ti–6Al–4 V) rods, and the control group included plain titanium alloy (Ti–6Al–4 V) rods. These rods were implanted in the mandibles of New Zealand white rabbits for 2, 4, and 6 weeks. After sacrifice, the test and control specimens were retrieved for mechanical pullout testing. The DMA 7-e was used to pull the titanium rods out of the bone, the probe position was plotted versus time graph to monitor the test progression, and the static modulus versus time graph was viewed; such graphs was then transformed into tables. The results were analyzed using the Mann-Whitney test. Results: The laser-grooved/RGD coated rods had significantly higher pull-out strength than the laser-grooved and control rods. Additionally, the laser-grooved rods had significantly higher pull-out strength than control rods. Conclusion: Two novel surface treatments were used: laser micro-grooving and tri peptide RGD coating, both of which had different effects on the dental implant interface. Laser grooving improved peri-implant bone healing, whereas RGD coating facilitated earlier bone–implant adhesion and better mineralization.

Keywords