AMB Express (Jul 2019)

Deficiency of biodegradable plastic-degrading enzyme production in a gene-deletion mutant of phyllosphere yeast, Pseudozyma antarctica defective in mannosylerythritol lipid biosynthesis

  • Azusa Saika,
  • Hideaki Koike,
  • Tohru Yarimizu,
  • Takashi Watanabe,
  • Hiroko Kitamoto,
  • Tomotake Morita

DOI
https://doi.org/10.1186/s13568-019-0825-2
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The basidiomycetous yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) produces extracellular enzymes and glycolipids, including mannosylerythritol lipids (MELs), which are biosurfactants. Strain GB-4(0) of this species was previously isolated from rice husks and produces biodegradable plastic-degrading enzyme (Pseudozyma antarctica esterase; PaE). In this study, we generated a MEL biosynthesis-deficient strain (∆PaEMT1) by deleting the gene PaEMT1, which is essential to MEL biosynthesis in strain GB-4(0). The resulting ∆PaEMT1 strain showed deficient PaE activity, and the corresponding signal was hardly detected in its culture supernatant through western blotting analysis using rabbit anti-PaE serum. On the other hand, the relative expression of the gene PaCLE1, encoding PaE, was identical between GB-4(0) and ∆PaEMT1 based on quantitative real-time PCR. When strain ∆PaEMT1 was grown in culture media supplemented with various surfactants, i.e., Tween20, BRIJ35 and TritonX-100, and MELs, PaE activity and secretion recovered. We also attempted to detect intracellular PaE using cell-free extract, but observed no signal in the soluble or insoluble fractions of ∆PaEMT1. This result suggested that the PaCLE1 gene was not translated to PaE, or that expressed PaE was degraded immediately in ∆PaEMT1. Based on these results, MEL biosynthesis is an important contributor to PaE production.

Keywords