IEEE Access (Jan 2023)

Solving the Sustainable Automobile Production-Distribution Joint Optimization in the Physical Internet-Enabled Hyperconnected Order-to-Delivery System by I-NSGAIII

  • Yaoting Xue,
  • Shoufeng Ji,
  • Guosong Zhu,
  • Pengyun Zhao

DOI
https://doi.org/10.1109/ACCESS.2023.3237735
Journal volume & issue
Vol. 11
pp. 7471 – 7494

Abstract

Read online

The Physical Internet (PI)-enabled hyperconnected order-to-delivery system (OTD) provides new solutions for sustainable supply chains from production perspectives. In this system, a PI-enabled hyperconnected manufacturing system is more closely tied with other functions through Internet-of-Things (IoT)-enabled machines for communication. In the OTD, the PI-enabled hyperconnected production–distribution system (PI-H) is modelled by multi-objective mixed-integer-nonlinear programming to evaluate sustainability. We develop an improved reference-point based non-dominated sorting genetic algorithm (I-NSGAIII) to solve practical-scale PI-enabled hyperconnected production-distribution scheduling problems, with the problem-specific solution expression and dynamic programming, subproblem-guided crossover and mutation strategies, and adaptive evolution mechanisms. I-NSGAIII’s performance advantages and PI-H’s sustainable advantages are validated through extensive experiments.

Keywords