Plants (Nov 2023)

Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Roots of Rice Seedlings under Nitrogen Deficiency

  • Dongfeng Qiu,
  • Yan Wu,
  • Kuaifei Xia,
  • Mingyong Zhang,
  • Zaijun Zhang,
  • Zhihong Tian

DOI
https://doi.org/10.3390/plants12234047
Journal volume & issue
Vol. 12, no. 23
p. 4047

Abstract

Read online

Long non-coding RNAs (lncRNAs) regulate gene expression in eukaryotic organisms. Research suggests that lncRNAs may be involved in the regulation of nitrogen use efficiency in plants. In this study, we identified 1628 lncRNAs based on the transcriptomic sequencing of rice roots under low-nitrogen (LN) treatment through the implementation of an integrated bioinformatics pipeline. After 4 h of LN treatment, 50 lncRNAs and 373 mRNAs were significantly upregulated, and 17 lncRNAs and 578 mRNAs were significantly downregulated. After 48 h LN treatment, 43 lncRNAs and 536 mRNAs were significantly upregulated, and 42 lncRNAs and 947 mRNAs were significantly downregulated. Moreover, the interaction network among the identified lncRNAs and mRNAs was investigated and one of the LN-induced lncRNAs (lncRNA24320.6) was further characterized. lncRNA24320.6 was demonstrated to positively regulate the expression of a flavonoid 3′-hydroxylase 5 gene (OsF3′H5). The overexpression of lncRNA24320.6 was shown to improve nitrogen absorption and promote growth in rice seedlings under LN conditions. Our results provide valuable insights into the roles of lncRNAs in the rice response to nitrogen starvation.

Keywords