Siberian Journal of Life Sciences and Agriculture (Feb 2021)
ОПРЕДЕЛЕНИЕ ЗАБОЛЕВАНИЙ МАНИОКА МЕТОДАМИ КОМПЬЮТЕРНОГО ЗРЕНИЯ
Abstract
Цель. Разработка модели сверточной нейронной сети для определения заболеваний маниока по фотографии с мобильного телефона. Методы и материалы исследования. Материалом для исследований послужили размеченные изображения с различными видами заболеваний маниока, опубликованные в открытом доступе платформы Kaggle. Методы исследования: теория проектирования и разработки информационных систем, программирования, методы аугментации и расширения датасетов для задач компьютерного зрения, методы настройки гиперпараметров обучения моделей нейронной сети. Результаты. Маниок съедобный – одна из ключевых культур для сельского хозяйства многих регионов мира. Одной из главных причин плохой урожайности является различного вида заболевания. Для профилактики и раннего предупреждения распространения заболевания растений необходим инструмент в виде модели нейронной сети, позволяющей определить наличия заболевания по фотографии со смартфона. В работе использовались методы глубинного обучения сверточных нейронных сетей, а также концепция «transfer learning». На базе сети ResNet 50 была обучена нейронная сеть, позволяющая с точностью 0,93 по метрике F1-score определять наличие заболевания у растения маниок съедобный по изображению. Заключение. Был подготовлен набор данных изображений маниоки, включающий пять классов, для эффективной классификации нейронной сетью. Четыре класса с признаками определенных заболеваний листьев маниоки и один класс для здоровых растений. Была построена и обучена модель для решения задачи классификации по обнаружению болезни листьев маниоки по изображениям со смартфона.
Keywords