Alexandria Engineering Journal (Feb 2021)
Traveling wave with beta derivative spatial-temporal evolution for describing the nonlinear directional couplers with metamaterials via two distinct methods
Abstract
This work is reported the analytical solutions for describing the nonlinear directional couplers with metamaterials by including spatial–temporal fractional beta derivative evolution. The auxiliary ordinary differential equation method and the generalized Riccati method with the properties of beta derivative are implemented to secure such solutions. The solutions are obtained in the new forms by involving of some useful mathematical functions. The constraint conditions among the traveling wave parameters are evaluated. Some of the obtained solutions are presented graphically to illustrate the effectiveness of beta derivative parameter and mathematical techniques. It is investigated that the amplitudes of soliton are increased with the increase of fractional beta derivative parameter. The obtained results would be very useful to examine and understand the physical issues in nonlinear optics, especially in twin-core couplers with optical metamaterials.