Microbial Biotechnology (Nov 2017)

Influence of biofilm lubricity on shear‐induced transmission of staphylococcal biofilms from stainless steel to silicone rubber

  • Niar Gusnaniar,
  • Jelmer Sjollema,
  • Ed D. Jong,
  • Willem Woudstra,
  • Joop deVries,
  • Titik Nuryastuti,
  • Henny C. van derMei,
  • Henk J. Busscher

DOI
https://doi.org/10.1111/1751-7915.12798
Journal volume & issue
Vol. 10, no. 6
pp. 1744 – 1752

Abstract

Read online

Summary In real‐life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear‐induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS‐producing and non‐EPS‐producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor‐biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high‐shearing velocity, transmission of non‐EPS‐producing bacteria to the second half decreased non‐linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS‐producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS‐rich biofilms, ensuring continued contact with the receiver. The non‐linear decrease of ongoing bacterial transmission under high‐shearing velocity is new and of relevance in for instance, high‐speed food slicers and food packaging.