Dosage compensation is a mechanism first proposed by Susumu Ohno, whereby X inactivation balances X gene output between males (XY) and females (XX), while X upregulation balances X genes with autosomal gene output. These mechanisms have been actively studied in Drosophila and mice, but research regarding them lags behind in domestic species. It is unclear how the X chromosome is regulated in the sheep male germline. To address this, using single-cell RNA sequencing, we analyzed testes in three important developmental stages of sheep. We observed that the total RNA per cell from X and autosomes peaked in SSCs and spermatogonia and was then reduced in early spermatocytes. Furthermore, we counted the detected reads per gene in each cell type for X and autosomes. In cells experiencing dose compensation, close proximity to MSL (male-specific lethal), which is regulated the active X chromosome and was observed. Our results suggest that there is no dose compensation in the pre-meiotic germ cells of sheep testes and, in addition, MSL1 and MSL2 are expressed in early germ cells and involved in regulating mammalian X-chromosome inactivation and activation.