IJCCS (Indonesian Journal of Computing and Cybernetics Systems) (Apr 2024)
Optimal Feature Selection in Diabetes Classification Using the MLP Algorithm
Abstract
In 2021, approximately 531 million people worldwide were affected by diabetes, with 90% diagnosed as type 2. Diabetes often coexists as a comorbidity with other conditions such as kidney and heart disease. The research aims to employ machine learning for diabetes classification, with the Multilayer Perceptron (MLP) algorithm being a key component in the early detection process. The experiments utilized data from the UCI database of Sylhet hospitals, featuring 16 attributes and 2 classes indicating positive and negative diabetes cases. Performance testing using the MLP algorithm involved varying the number of neurons in the hidden layer. The research architecture is denoted as n:p:m, where n represents 16 neurons based on the attributes, m signifies 2 neurons based on the number of classes, and p undergoes variations. The machine learning tool employed in this research is Weka. Within the Weka tool, MLP offers types of hidden layer neuron configurations: 'a', 't', 'i', and 'o'. The test results, conducted with 520 training data and testing on the same dataset, yielded accuracies of 98.85%, 98.85%, 99.42%, and 98.46% for types 'a', 't', 'i', and 'o', respectively.
Keywords