Division of developmental phases of freshwater leech Whitmania pigra and key genes related to neurogenesis revealed by whole genome and transcriptome analysis
Jiali Liu,
Jinxin Liu,
Mingyue Li,
Lisi Zhou,
Weijun Kong,
Hailin Zhang,
Panpan Jin,
Fuhua Lu,
Gufa Lin,
Linchun Shi
Affiliations
Jiali Liu
Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education
Jinxin Liu
Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education
Mingyue Li
Renji Hospital, Shanghai Jiao Tong University School of Medicine
Lisi Zhou
Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education
Weijun Kong
School of Traditional Chinese Medicine, Capital Medical University
Hailin Zhang
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University
Panpan Jin
Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education
Fuhua Lu
Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education
Gufa Lin
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University
Linchun Shi
Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193, China Engineering Research Center of Chinese Medicine Resource, Ministry of Education
Abstract The freshwater leech Whitmania pigra (W. pigra) Whitman (Annelida phylum) is a model organism for neurodevelopmental studies. However, molecular biology research on its embryonic development is still scarce. Here, we described a series of developmental stages of the W. pigra embryos and defined five broad stages of embryogenesis: cleavage stages, blastocyst stage, gastrula stage, organogenesis and refinement, juvenile. We obtained a total of 239.64 Gb transcriptome data of eight representative developmental phases of embryos (from blastocyst stage to maturity), which was then assembled into 21,482 unigenes according to our reference genome sequenced by single-molecule real-time (SMRT) long-read sequencing. We found 3114 genes differentially expressed during the eight phases with phase-specific expression pattern. Using a comprehensive transcriptome dataset, we demonstrated that 57, 49 and 77 DEGs were respectively related to morphogenesis, signal pathways and neurogenesis. 49 DEGs related to signal pathways included 30 wnt genes, 14 notch genes, and 5 hedgehog genes. In particular, we found a cluster consisting of 7 genes related to signal pathways as well as synapses, which were essential for regulating embryonic development. Eight genes cooperatively participated in regulating neurogenesis. Our results reveal the whole picture of W. pigra development mechanism from the perspective of transcriptome and provide new clues for organogenesis and neurodevelopmental studies of Annelida species.