Heliyon (Apr 2024)

Surviving process and transit: Controlled freeze drying, storage and enteric coated capsules for targeted delivery of probiotic Lactobacillus acidophilus

  • Mansa Fredua-Agyeman

Journal volume & issue
Vol. 10, no. 7
p. e28407

Abstract

Read online

Viability loss of probiotics often occur during processing, storage and gastrointestinal transit. In this study, the viability of freeze-dried Lactobacillus acidophilus LA-5® was assessed after controlled freeze drying and storage at 4 °C and 25 °C over six months using glycerol, skim milk and trehalose as protectants. The freeze-dried probiotic was filled into hard gelatin capsules and enteric coated with the co-polymer Eudragit L100-55 using a fluidised bed coater to determine if the freeze-dried probiotic will survive the enteric coating process and remain viable during gastric transit. Empty hard gelatin capsules were also enteric coated by dipping in the co-polymer solution. These were dried, filled with microcrystalline cellulose and tested for their resistance to simulated gastric condition. The results showed that controlled freezing of the probiotic bacteria did not cause significant loss in viability when the cells were cryopreserved in the protectants. Viable cell loss was greater during the drying stage. Relatively better cell survival was recorded when the freeze-dried samples that were cryopreserved with skim milk were stored over six months at 4 °C. Freeze-dried samples that were preserved with trehalose stored better at 25 °C. The results also demonstrated that capsules coated with Eudragit L100-55 did not disintegrate in simulated gastric fluid. However, the capsules disintegrated in a simulated intestinal fluid. The enteric coating process resulted in about 95% recovery of viable cells. The high viable cell recovery after the coating process is likely due to the coating solution and conditions impacting the capsule body and cap rather than the cells directly. The study highlights that enteric coated capsules can offer gastric protection whilst minimizing viability losses associated with the enteric coating process.

Keywords