Periodic Solution and Asymptotic Stability for the Magnetohydrodynamic Equations with Inhomogeneous Boundary Condition
Igor Kondrashuk,
Eduardo Alfonso Notte-Cuello,
Mariano Poblete-Cantellano,
Marko Antonio Rojas-Medar
Affiliations
Igor Kondrashuk
Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Av. Andres Bello 720, Casilla 447, Chillán 3780227, Chile
Eduardo Alfonso Notte-Cuello
Departamento de Matemáticas, Universidad de La Serena, La Serena 1720236, Chile
Mariano Poblete-Cantellano
Departamento de Matemáticas, Universidad de Atacama, Av. Copayapu 485, Casilla 240, Copiapó 1531772, Chile
Marko Antonio Rojas-Medar
Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1001003, Chile
We show, using the spectral Galerkin method together with compactness arguments, the existence and uniqueness of the periodic strong solutions for the magnetohydrodynamic-type equations with inhomogeneous boundary conditions. Furthermore, we study the asymptotic stability for the time periodic solution for this system. In particular, when the magnetic field h ( x , t ) is zero, we obtain the existence, uniqueness, and asymptotic behavior of the strong solutions to the Navier–Stokes equations with inhomogeneous boundary conditions.