BMC Cancer (Dec 2007)

Biological characterization of two xenografts derived from human CUPs (carcinomas of unknown primary)

  • Bernheim Alain,
  • Hainaut Pierre,
  • Souquère Sylvie,
  • Mathieu Marie-Christine,
  • Toujani Saloua,
  • Fizazi Karim,
  • Lequin Delphine,
  • Praz Françoise,
  • Busson Pierre

DOI
https://doi.org/10.1186/1471-2407-7-225
Journal volume & issue
Vol. 7, no. 1
p. 225

Abstract

Read online

Abstract Background Carcinomas of unknown primary site (CUP) are epithelial malignancies revealed by metastatic lesions in the absence of any detectable primary tumor. Although they often adopt an aggressive clinical pattern, their basic biology remains poorly understood. Laboratory research on their biology have been hampered so far by the absence of cell lines representative of CUPs. Methods We attempted xenografts of CUP clinical specimens in immunodeficient mice and subsequent in vitro culture of transplanted malignant cells. Whenever possible, malignant xenografted or cultured cells were characterized by microsatellite genotyping, immunohistology, electron microscopy, multifish chromosome analysis and search of TP 53 gene mutations. Results Successful xenografts were achieved in 2 cases out of 4. One of them (Capi1) was lost after 3 passages whereas the other one (Capi3) has been adapted to in vitro culture and is currently available to the scientific community with reliable identification based on microsatellite genotyping. Both Capi1 and Capi3 have histological characteristics of adenocarcinomas and display intense expression of EMA, CEA and cytokeratin 7. Multifish chromosome analysis demonstrated a translocation involving chromosomes 4 and 21 in both specimens. Distinct rare missense mutations of the TP53 gene were detected in Capi1 (codon 312) and Capi3 (codon 181); the codon 181 mutation is consistent with a previously reported similar finding in a small series of CUP specimens. Finally, intense membrane expression of c-kit was recorded in Capi3. Conclusion Our data suggest that xenografted tumors can be obtained from a substantial fraction of CUP clinical specimens. The hypothesis of a preferential association of CUPs with TP 53 mutations of codon 181 deserves further investigations. The Capi3 cell line will be a useful tool for assessment of novel c-kit inhibitors.