Atmospheric Measurement Techniques (Aug 2021)

Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO<sub>2</sub> and CH<sub>2</sub>O measurements during the reaction of NO<sub>2</sub> with H<sub>2</sub>O vapour in the simulation chamber CESAM

  • H. Yi,
  • H. Yi,
  • M. Cazaunau,
  • A. Gratien,
  • V. Michoud,
  • E. Pangui,
  • J.-F. Doussin,
  • W. Chen

DOI
https://doi.org/10.5194/amt-14-5701-2021
Journal volume & issue
Vol. 14
pp. 5701 – 5715

Abstract

Read online

We report on applications of the ultraviolet-light-emitting-diode-based incoherent broadband cavity-enhanced absorption spectroscopy (UV-LED-IBBCEAS) technique for optical monitoring of HONO, NO2 and CH2O in a simulation chamber. Performance intercomparison of UV-LED-IBBCEAS with a wet chemistry-based NitroMAC sensor and a Fourier transform infrared (FTIR) spectrometer has been carried out on real-time simultaneous measurement of HONO, NO2 and CH2O concentrations during the reaction of NO2 with H2O vapour in CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber). The 1σ (signal-to-noise ratio (SNR) = 1) detection limits of 112 pptv for NO2, 56 pptv for HONO and 41 ppbv for CH2O over 120 s were found for the UV-LED-IBBCEAS measurement. On the contrary to many set-ups where cavities are installed outside the simulation chamber, we describe here an original in situ permanent installation. The intercomparison results demonstrate that IBBCEAS is a very well suitable technique for in situ simultaneous measurements of multiple chemically reactive species with high sensitivity and high precision even if the absorption bands of these species are overlapped. It offers excellent capacity for non-invasive optical monitoring of chemical reactions without any perturbation. For the application to simulation chambers, it has the advantage to provide a spatially integrated measurement across the reactor and hence to avoid point-sampling-related artefacts.