Atmospheric Chemistry and Physics (Dec 2022)
Emission factors and evolution of SO<sub>2</sub> measured from biomass burning in wildfires and agricultural fires
- P. S. Rickly,
- P. S. Rickly,
- H. Guo,
- H. Guo,
- P. Campuzano-Jost,
- P. Campuzano-Jost,
- J. L. Jimenez,
- J. L. Jimenez,
- G. M. Wolfe,
- R. Bennett,
- I. Bourgeois,
- I. Bourgeois,
- J. D. Crounse,
- J. E. Dibb,
- J. P. DiGangi,
- G. S. Diskin,
- M. Dollner,
- E. M. Gargulinski,
- S. R. Hall,
- H. S. Halliday,
- T. F. Hanisco,
- R. A. Hannun,
- R. A. Hannun,
- J. Liao,
- J. Liao,
- R. Moore,
- B. A. Nault,
- J. B. Nowak,
- J. Peischl,
- J. Peischl,
- C. E. Robinson,
- C. E. Robinson,
- T. Ryerson,
- T. Ryerson,
- K. J. Sanchez,
- M. Schöberl,
- A. J. Soja,
- A. J. Soja,
- J. M. St. Clair,
- J. M. St. Clair,
- K. L. Thornhill,
- K. Ullmann,
- P. O. Wennberg,
- P. O. Wennberg,
- B. Weinzierl,
- E. B. Wiggins,
- E. L. Winstead,
- A. W. Rollins
Affiliations
- P. S. Rickly
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
- P. S. Rickly
- Chemical Sciences Laboratory, NOAA, Boulder, CO, USA
- H. Guo
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
- H. Guo
- Department of Chemistry, University of Colorado, Boulder, CO, USA
- P. Campuzano-Jost
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
- P. Campuzano-Jost
- Department of Chemistry, University of Colorado, Boulder, CO, USA
- J. L. Jimenez
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
- J. L. Jimenez
- Department of Chemistry, University of Colorado, Boulder, CO, USA
- G. M. Wolfe
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- R. Bennett
- Bay Area Environmental Research Institute, NASA Ames Research Center, Moffett Field, CA, USA
- I. Bourgeois
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
- I. Bourgeois
- Chemical Sciences Laboratory, NOAA, Boulder, CO, USA
- J. D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- J. E. Dibb
- Earth System Research Center, University of New Hampshire, Durham, NH, USA
- J. P. DiGangi
- NASA Langley Research Center, Hampton, VA, USA
- G. S. Diskin
- NASA Langley Research Center, Hampton, VA, USA
- M. Dollner
- Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, 1090 Vienna, Austria
- E. M. Gargulinski
- National Institute of Aerospace, Resident at NASA Langley Research Center, Hampton, VA, USA
- S. R. Hall
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- H. S. Halliday
- Environmental Protection Agency, Research Triangle, NC, USA
- T. F. Hanisco
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- R. A. Hannun
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- R. A. Hannun
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- J. Liao
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- J. Liao
- Goddard Earth Science Technology and Research (GESTAR) II, University of Maryland Baltimore County, Baltimore, MD, USA
- R. Moore
- NASA Langley Research Center, Hampton, VA, USA
- B. A. Nault
- CACC, Aerodyne Research, Inc., Billerica, MA, USA
- J. B. Nowak
- NASA Langley Research Center, Hampton, VA, USA
- J. Peischl
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
- J. Peischl
- Chemical Sciences Laboratory, NOAA, Boulder, CO, USA
- C. E. Robinson
- NASA Langley Research Center, Hampton, VA, USA
- C. E. Robinson
- Science Systems and Applications, Inc., Hampton, VA, USA
- T. Ryerson
- Chemical Sciences Laboratory, NOAA, Boulder, CO, USA
- T. Ryerson
- now at: Scientific Aviation, Boulder, CO, USA
- K. J. Sanchez
- NASA Langley Research Center, Hampton, VA, USA
- M. Schöberl
- Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, 1090 Vienna, Austria
- A. J. Soja
- NASA Langley Research Center, Hampton, VA, USA
- A. J. Soja
- National Institute of Aerospace, Resident at NASA Langley Research Center, Hampton, VA, USA
- J. M. St. Clair
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- J. M. St. Clair
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- K. L. Thornhill
- NASA Langley Research Center, Hampton, VA, USA
- K. Ullmann
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- P. O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- P. O. Wennberg
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- B. Weinzierl
- Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, 1090 Vienna, Austria
- E. B. Wiggins
- NASA Langley Research Center, Hampton, VA, USA
- E. L. Winstead
- NASA Langley Research Center, Hampton, VA, USA
- A. W. Rollins
- Chemical Sciences Laboratory, NOAA, Boulder, CO, USA
- DOI
- https://doi.org/10.5194/acp-22-15603-2022
- Journal volume & issue
-
Vol. 22
pp. 15603 – 15620
Abstract
Fires emit sufficient sulfur to affect local and regional air quality and climate. This study analyzes SO2 emission factors and variability in smoke plumes from US wildfires and agricultural fires, as well as their relationship to sulfate and hydroxymethanesulfonate (HMS) formation. Observed SO2 emission factors for various fuel types show good agreement with the latest reviews of biomass burning emission factors, producing an emission factor range of 0.47–1.2 g SO2 kg−1 C. These emission factors vary with geographic location in a way that suggests that deposition of coal burning emissions and application of sulfur-containing fertilizers likely play a role in the larger observed values, which are primarily associated with agricultural burning. A 0-D box model generally reproduces the observed trends of SO2 and total sulfate (inorganic + organic) in aging wildfire plumes. In many cases, modeled HMS is consistent with the observed organosulfur concentrations. However, a comparison of observed organosulfur and modeled HMS suggests that multiple organosulfur compounds are likely responsible for the observations but that the chemistry of these compounds yields similar production and loss rates as that of HMS, resulting in good agreement with the modeled results. We provide suggestions for constraining the organosulfur compounds observed during these flights, and we show that the chemistry of HMS can allow organosulfur to act as an S(IV) reservoir under conditions of pH > 6 and liquid water content >10−7 g sm−3. This can facilitate long-range transport of sulfur emissions, resulting in increased SO2 and eventually sulfate in transported smoke.