Morphological and Transcriptomic Analyses Reveal the Involvement of Key Metabolic Pathways in Male Sterility in <i>Chimonanthus praecox</i> (L.) Genotypes
Bin Liu,
Huafeng Wu,
Yinzhu Cao,
Xiaowen Zheng,
Haoxiang Zhu,
Shunzhao Sui
Affiliations
Bin Liu
Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Huafeng Wu
Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Yinzhu Cao
Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Xiaowen Zheng
Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Haoxiang Zhu
College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Shunzhao Sui
Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Chimonanthus praecox (Calycanthaceae family) is a unique ornamental and economic flowering tree in China, and after thousands of years of cultivation, it has produced several varieties and varietal types. Notably, male sterility is common in flowering plants and is an important tool for the genetic improvement in plants and optimization using hybrid plant technology; however, there have been no reports on male-sterile material or related studies on C. praecox. To our knowledge, this is the first time that C. praecox male sterility is dissected unveiling the involvement of key metabolic pathways. Notably, male sterility in C. praecox was observed during the budding period and likely occurred during the premature stage of pollen cell maturation. Additionally, differentially expressed genes in the starch and sucrose metabolism pathway and the plant hormone signal transduction pathway showed regular expression trends. This study reports on significant genetic differences that contribute to male sterility in C. praecox and provides a basis for further research and breeding strategies.