Axioms (Aug 2023)
On the Geometry of the Riemannian Curvature Tensor of Nearly Trans-Sasakian Manifolds
Abstract
This paper presents the results of fundamental research into the geometry of the Riemannian curvature tensor of nearly trans-Sasakian manifolds. The components of the Riemannian curvature tensor on the space of the associated G-structure are counted, and the components of the Ricci tensor are calculated. Some identities are obtained that are satisfied by the Riemannian curvature tensors and the Ricci tensor. A number of properties are proved that characterize nearly trans-Sasakian manifolds with a closed contact form. The structure of nearly trans-Sasakian manifolds with a closed contact form is obtained. Several classes are singled out in terms of second-order differential-geometric invariants, and their local structure is obtained. The k-nullity distribution of a nearly trans-Sasakian manifold is studied.
Keywords