Analysis of Nicotine Metabolites in Hair and Nails Using QuEChERS Method Followed by Liquid Chromatography–Tandem Mass Spectrometry
Junhee Kim,
Hyun-Deok Cho,
Joon Hyuk Suh,
Ji-Youn Lee,
Eunyoung Lee,
Chang Hwa Jin,
Yu Wang,
Sangwon Cha,
Hosub Im,
Sang Beom Han
Affiliations
Junhee Kim
Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
Hyun-Deok Cho
Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
Joon Hyuk Suh
Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA
Ji-Youn Lee
Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
Eunyoung Lee
Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
Chang Hwa Jin
Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
Yu Wang
Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA
Sangwon Cha
Department of Chemistry, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Hosub Im
Institute for Life & Environmental Technology, Smartive Corporation, Dobong-ro 110 na-gil, Dobong-gu, Seoul 01454, Korea
Sang Beom Han
Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
Many studies have analyzed nicotine metabolites in blood and urine to determine the toxicity caused by smoking, and assess exposure to cigarettes. Recently, hair and nails have been used as alternative samples for the evaluation of smoking, as not only do they reflect long-term exposure but they are also stable and easy to collect. Liquid-liquid or solid-phase extraction has mainly been used to detect nicotine metabolites in biological samples; however, these have disadvantages, such as the use of toxic organic solvents and complex pretreatments. In this study, a modified QuEChERS method was proposed for the first time to prepare samples for the detection of nicotine metabolite cotinine (COT) and trans-3′-hydroxycotinine (3-HCOT) in hair and nails. High-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) was used to analyze traces of nicotine metabolites. The established method was validated for selectivity, linearity, lower limit of quantitation, accuracy, precision and recovery. In comparison with conventional liquid-liquid extraction (LLE), the proposed method was more robust, and resulted in higher recoveries with favorable analytical sensitivity. Using this method, clinical samples from 26 Korean infants were successfully analyzed. This method is expected to be applicable in the routine analysis of nicotine metabolites for environmental and biological exposure monitoring.