Journal of Minimally Invasive Spine Surgery and Technique (Oct 2021)
Osteoporotic Fractures of Thoracolumbar Spine with Neurodeficit: Radiological Instability Scoring and Minimally Invasive Stabilization
Abstract
Objective Identify unstable osteoporotic fractures with neurological impairment with a radiological instability score and treat them with minimally invasive percutaneous stabilization and vertebroplasty. Methods Thirty patients who had osteoporotic vertebral fractures with worsening back pain and neurologic impairment were included in the study. Charlson comorbidity index was used to assess the medical risk for a more extensive surgery. MRI, CT scan and plain radiographs of these patients were evaluated and seven spine instability signs were identified. A score of one was given for presence of one of these risk factors. These patients underwent minimally invasive percutaneous stabilization and vertebroplasty with or without decompression. Pre and post operative ASIA score, VAS scores were recorded. Cobbs angle, and anterior vertebral body height was recorded pre-operative and during each follow up. Results There were 11 men and 19 women with a mean age of 71 years (range, 61–89). Sixteen patients had ASIA D, 10 had ASIA C and 4 had ASIA B. All of these patients had an instability score of ≥3. All these patients neurologically recovered, the VAS score for back pain significantly improved, and the spine was stable at one year follow up. Two patient required revision and extension of stabilization due to loosing of pedicle screws and recurrent instability. Conclusion Monitoring of spinal instability is essential in osteoporotic vertebral fractures. Presence of three or more instability signs is associated with worsening neurological outcome. These unstable fractures with neurologic impairment can be effectively treated with minimally invasive stabilization and vertebroplasty.
Keywords