Scientific Reports (Oct 2024)

Comparative analysis of microwave radiation generated by the interaction between electron beam and plasma under different methods

  • Shen Gao,
  • Jing-Xin Liu,
  • Jin-Ke Zhang

DOI
https://doi.org/10.1038/s41598-024-74973-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract This article presents a physical model that describes the interaction between surface electron beams and plasma. The dispersion relations for beam plasma interactions were derived using perturbation method and field matching methods. The study investigates how different parameters affect radiation frequency and bandwidth. The results indicate that as electron beam velocity increases, the associated kinetic energy also rises, leading to an increase in both the maximum radiation frequency and bandwidth at high frequencies. Conversely, the radiation bandwidth at low frequencies decreases. Similarly, a higher plasma density results in a greater maximum radiation frequency, but the high-frequency bandwidth decreases, while the low-frequency bandwidth increases. Additionally, when the electron density and electron velocity of the electron beam remain constant, increasing the plasma density can increase the microwave radiation frequency However, there exists a plasma density threshold, beyond which high-frequency electromagnetic waves are no longer radiated.

Keywords