Ecological Processes (Jan 2018)

Quantifying the spatial and temporal distribution of tanglehead (Heteropogon contortus) on South Texas rangelands

  • Jose M. Mata,
  • Humberto L. Perotto-Baldivieso,
  • Fidel Hernández,
  • Eric D. Grahmann,
  • Sandra Rideout-Hanzak,
  • John T. Edwards,
  • Michael T. Page,
  • Taylor M. Shedd

DOI
https://doi.org/10.1186/s13717-018-0113-0
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Introduction Tanglehead is a grass native to southwestern US rangelands; however, its prevalence as a native invasive on South Texas rangelands has increased rapidly during the last decade. Large areas of monotypic stands have emerged in Jim Hogg, Duval, Brooks, and Kleberg counties. The aim of this research is to understand the spatial and temporal dynamics of these invasions as a model for the assessment of native invasive species. Our specific objectives were to (1) evaluate the feasibility of classifying tanglehead using 1-m resolution imagery data, (2) assess the spatial and temporal distribution of tanglehead in relation to soil type and distance from roads, and (3) quantify the temporal and spatial distribution of tanglehead on our study sites. We combined remote sensing approaches with landscape metrics to quantify the spatial and temporal distribution of tanglehead in five locations across our study area. We calculated the normalized difference vegetation index and combined it with the original aerial imagery to conduct an unsupervised classification with the following land cover classes: woody vegetation, tanglehead, non-tanglehead herbaceous, and bare ground. Soil type and the distance from roads were assessed to determine the relationship between these factors and tanglehead spatial distribution. Results We were able to successfully map tanglehead using the 1-m imagery. Our image classification approach resulted in accuracies greater than 85% for all sites. Tanglehead occurred in sandy, loamy sand, and sandy loam soils. Over 70% of tanglehead cover occurred within the first 150 m from the edge of roads. This cover increased from 7.1% (SE = 1.1%) in 2008 to 17.8% (SE = 5.4%) in 2014. Once established, small patches of tanglehead began aggregating or coalescing with existing stands, thereby creating larger patches over larger areas. Conclusions Our study has shown the value of analyzing spatiotemporal dynamics of tanglehead with remote sensing techniques and landscape metrics to improve our understanding of establishment and dispersal processes of a native invasive. This study provides useful information to improve rangeland management decisions as well as assessing native invasive dynamics with potential applications for assessing its effects on wildlife habitat, livestock operations, and habitat restoration strategies.