iForest - Biogeosciences and Forestry (Dec 2018)

Distribution of aluminium fractions in acid forest soils: influence of vegetation changes

  • Pavlu L,
  • Drabek O,
  • Stejskalova S,
  • Tejnecky V,
  • Hradilova M,
  • Nikodem A,
  • Boruvka L

DOI
https://doi.org/10.3832/ifor2498-011
Journal volume & issue
Vol. 11, no. 1
pp. 721 – 727

Abstract

Read online

This study examines aluminium as a potentially phytotoxic element in acidic forest soils. Concentrations of Al forms in soils are generally controlled by soil chemical conditions, such as pH, organic matter, base cation contents, etc. Moreover, soil conditions are influenced by the vegetation cover. This study analyzed the distribution of Al forms in soils after changes in vegetation. HPLC/IC was used for the separation of three Al fractions in two soil extracts according to their charge. An aqueous extract (AlH2O) simulated the natural soil conditions and bioavailable Al fractions. Potentially available Al form was represented by a 0.5 M KCl extract (AlKCl). We demonstrated that the vegetation type influences the concentrations of different Al fractions, mainly in the surface organic horizons. Differences were more common in the KCl extract. The trivalent fraction was less influenced by vegetation changes than the mono- and divalent fractions. Afforestation increased the concentrations of AlKCl and AlH2O. In contrast, grass expansion after deforestation led to significantly decreased concentrations of AlKCl and AlH2O. Concentrations of AlH2O in organic horizons were higher in spruce forest than in beech forest. A long-term effect of liming on soil pH and concentrations of potentially toxic Al fractions was not apparent. The results provide information on the variations of Al fractions distributions following vegetation type changes and indicate the existence of some natural mechanisms controlling Al toxicity. Furthermore, the results can be used in the management of forested areas endangered by soil acidification.

Keywords