E3S Web of Conferences (Jan 2017)

Artificial neural networks application for solid fuel slagging intensity predictions

  • Kakietek Sławomir,
  • Szymczak Jerzy

DOI
https://doi.org/10.1051/e3sconf/20171402004
Journal volume & issue
Vol. 14
p. 02004

Abstract

Read online

Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP) being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.