International Journal of Aerospace Engineering (Jan 2018)
Consensus Control of Time-Varying Delayed Multiagent Systems with High-Order Iterative Learning Control
Abstract
We address the consensus control problem of time-varying delayed multiagent systems with directed communication topology. The model of each agent includes time-varying nonlinear dynamic and external disturbance, where the time-varying nonlinear term satisfies the global Lipschitz condition and the disturbance term satisfies norm-bounded condition. An improved control protocol, that is, a high-order iterative learning control scheme, is applied to cope with consensus tracking problem, where the desired trajectory is generated by a virtual leader agent. Through theoretical analysis, the improved control protocol guarantees that the tracking errors converge asymptotically to a sufficiently small interval under the given convergence conditions. Furthermore, the bounds of initial state difference and disturbances tend to zero; the bound of tracking errors also tends to zero. In the end, some cases are provided to illustrate the effectiveness of the theoretical analysis.