Experimental Hematology & Oncology (Nov 2023)

Molecular characterization of the CXCR4 / CXCR7 axis in germ cell tumors and its targetability using nanobody-drug-conjugates

  • Gamal A. Wakileh,
  • Philipp Bierholz,
  • Mara Kotthoff,
  • Margaretha A. Skowron,
  • Felix Bremmer,
  • Alexa Stephan,
  • Stephanie M. Anbuhl,
  • Raimond Heukers,
  • Martine J. Smit,
  • Philipp Ströbel,
  • Daniel Nettersheim

DOI
https://doi.org/10.1186/s40164-023-00460-9
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 5

Abstract

Read online

Abstract Being stimulated by the chemokine CXCL12, the CXCR4 / CXCR7 cascade is involved in tumor proliferation, migration, and metastasis. The interaction between CXCL12, secreted by cells from the microenvironment, and its receptors is complex and has been ascribed to promote chemotherapy resistance. However, the role of this signaling axis and its targetability in germ cell tumors (GCT) is not fully understood. Thus, this study investigated the therapeutic efficacy of a nanobody-drug-conjugate targeting CXCR4 (CXCR4-NDC) and functionally characterized this signaling pathway in GCT using small molecule inhibitors and nanobodies. As shown by diminished cell viability, enhanced apoptosis induction, and detection of mitotic catastrophes, we confirmed the cytotoxic efficacy of the CXCR4-NDC in CXCR4+-GCT cells (i.e. seminoma and yolk-sac tumor), while non-malignant CXCR4−-fibroblasts, remained largely unaffected. Stimulation of CXCR4+ / CXCR7+-GCT cells with CXCL12 resulted in an enhanced proliferative and migratory capacity, while this effect could be reverted using CXCR4 inhibitors or a CXCR7-nanobody. Molecularly, the CXCR4 / CXCR7-signaling cascade could be activated independently of MAPK (ERK1 / 2)-phosphorylation. Although, in CXCR4− / CXCR7−-embryonal carcinoma cells, CXCR7-expression was re-induced upon inhibition of ERK1 / 2-signaling. This study identified a nanobody-drug-conjugate targeting CXCR4 as a putative therapeutic option for GCT, i.e. seminoma and yolk-sac tumors. Furthermore, this study shed light on the functional role of the CXCR4 / CXCR7 / CXCL12-signaling cascade in GCT, demonstrating an important influence on proliferation and migration.

Keywords