Journal of Pharmacological Sciences (Jan 2006)

Signaling Pathways Involved in the Cardioprotective Effects of Cannabinoids

  • Philippe Lépicier,
  • Annie Bibeau-Poirier,
  • Caroline Lagneux,
  • Marc J. Servant,
  • Daniel Lamontagne

Journal volume & issue
Vol. 102, no. 2
pp. 155 – 166

Abstract

Read online

The aim of the present article is to review the cardioprotective properties of cannabinoids, with an emphasis on the signaling pathways involved. Cannabinoids have been reported to protect against ischemia in rat isolated hearts, as well as in rats and mice in vivo. Although these effects have been observed mostly with a pre-treatment of a cannabinoid, we report that the selective CB2-receptor agonist JWH133 is able to reduce infarct size when administered either before ischemia, during the entire ischemic period, or just upon reperfusion. Little is known about the signaling pathways involved in these cardioprotective effects. Likely candidates include protein kinase C (PKC) and mitogen-activated protein kinases (MAPK) since they are activated during ischemia-reperfusion and contribute to the protective effect ischemic preconditioning. The use of pharmacological inhibitors suggests that PKC, p38 MAPK, and p42/p44 MAPK (ERK1/2) contribute to the protective effect of cannabinoids. In addition, perfusion with JWH133 in healthy hearts caused an increase in both p38 MAPK phosphorylation level and activity, whereas the CB1-receptor agonist ACEA was associated with an increase in the phosphorylation status of both ERK1 and ERK2 without any change in activity. During ischemia, both agonists doubled p38 MAPK activity, whereas ERK1/2 phosphorylation level and activity during reperfusion were enhanced only by the CB1-receptor agonist. Finally, although nitric oxide (NO) was shown to exert both pro and anti-apoptotic effects on cardiomyocytes, with an apparently controversial effect on myocardial survival, our data suggest that NO may contribute to the cardioprotective effect of some cannabinoids. Keywords:: cannabinoid, ischemia, reperfusion, mitogen-activated protein kinase, preconditioning