Forests (Jul 2024)

Detection of Mulberry Leaf Diseases in Natural Environments Based on Improved YOLOv8

  • Ming Zhang,
  • Chang Yuan,
  • Qinghua Liu,
  • Hongrui Liu,
  • Xiulin Qiu,
  • Mengdi Zhao

DOI
https://doi.org/10.3390/f15071188
Journal volume & issue
Vol. 15, no. 7
p. 1188

Abstract

Read online

Mulberry leaves, when infected by pathogens, can suffer significant yield loss or even death if early disease detection and timely spraying are not performed. To enhance the detection performance of mulberry leaf diseases in natural environments and to precisely locate early small lesions, we propose a high-precision, high-efficiency disease detection algorithm named YOLOv8-RFMD. Based on improvements to You Only Look Once version 8 (YOLOv8), we first proposed the Multi-Dimension Feature Attention (MDFA) module, which integrates important features at the pixel-level, spatial, and channel dimensions. Building on this, we designed the RFMD Module, which consists of the Conv-BatchNomalization-SiLU (CBS) module, Receptive-Field Coordinated Attention (RFCA) Conv, and MDFA, replacing the Bottleneck in the model’s Residual block. We then employed the ADown down-sampling structure to reduce the model size and computational complexity. Finally, to improve the detection precision of small lesion features, we replaced the Complete Intersection over Union (CIOU) loss function with the Normalized Wasserstein Distance (NWD) loss function. Results show that the YOLOv8-RFMD model achieved a mAP50 of 94.3% and a mAP50:95 of 67.8% on experimental data, representing increases of 2.9% and 4.3%, respectively, compared to the original model. The model size was reduced by 0.53 MB to just 5.45 MB, and the GFLOPs were reduced by 0.3 to only 7.8. YOLOv8-RFMD has displayed great potential for application in real-world mulberry leaf disease detection systems and automatic spraying operations.

Keywords