Scientific Reports (Feb 2023)

The role of tracheal wall injury in the development of benign airway stenosis in rabbits

  • Jie Zhang,
  • Yue hong Liu,
  • Zhen yu Yang,
  • Zi yi Liu,
  • Chang guo Wang,
  • Da xiong Zeng,
  • Jun hong Jiang

DOI
https://doi.org/10.1038/s41598-023-29483-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 8

Abstract

Read online

Abstract To investigate the role of tracheal wall injury in the development of benign airway stenosis in rabbits. Prospective study. We injured the tracheal walls of 28 New Zealand white rabbits using four different methods. Experimental group: Group A (n = 7, mild injury of tracheal mucosa by ordinary brush under bronchoscopy); Group B (n = 7, severe injury of tracheal mucosa by nylon brush under tracheotomy); Group C (n = 7, tracheal cartilage was injured by vascular clamp after tracheotomy); Group D (n = 7, the tracheal cartilage was injured with vascular forceps and the tracheal mucosa was injured with a nylon brush after tracheotomy). Bronchoscopy was performed on each experimental rabbit at 1, 2, 3 and 4 weeks after operation. High-resolution computed tomography (HRCT) and endobronchial optical coherence tomography (EB-OCT) were performed at 4 weeks, and the rabbits were sacrificed after the examination. Their gross and histological findings were comparatively determined whether the experimental rabbit stenosis was established. No airway stenosis was observed in group A. In group B, 28.57% of experimental rabbits developed tracheal stenosis (granulation tissue proliferation was observed in rabbits No. 2 and No. 6 at 1, 2 and 3 weeks after operation, and the tracheal scar contracture was observed in No.6 rabbit at 4 weeks after operation). Fourteen rabbits in group C and group D had tracheal stenosis caused by granulation tissue proliferation at 1, 2 and 3 weeks after operation. At the fourth week after operation, 71.43% of experimental rabbits had tracheal stenosis due to granulation tissue hyperplasia, 7.14% of experimental rabbits had tracheal stenosis due to scar contracture and granulation hyperplasia, and 21.43% of experimental rabbits had tracheal stenosis due to scar contracture. EB-OCT scan showed that the cartilage layer with low signal reflection band was discontinuous. The injury of cartilage is the key factor of benign airway stenosis. Acute injury of airway mucosa alone is unlikely to cause airway stenosis, but combined with cartilage injury may aggravate airway stenosis. EB-OCT can clearly identify the airway layers of rabbits, which is helpful to evaluate the damage of tracheal cartilage and mucosa. The diagnostic potential of this technique makes EB-OCT a promising approach for the study and monitoring of airway diseases.