Frontiers in Sustainable Food Systems (Apr 2024)

Analysis of the coupling coordination of livestock production, residential consumption, and resource and environmental carrying capacity in China

  • Kun Zhou,
  • Jin Wu,
  • Hongyao Li,
  • Zhenwang Zhang,
  • Hong Wu,
  • Jianqiang Li

DOI
https://doi.org/10.3389/fsufs.2024.1365076
Journal volume & issue
Vol. 8

Abstract

Read online

Increasing demands for livestock products have stimulated rapid increases in the number of livestock and the scale of farming, thus increasing pressure on resources and the environment. Coordinating the development of livestock production (LP) with residential consumption (RC), resources and the environmental carrying capacity (RECC) is important to ensure sustainable development. In this study, the entropy weight method and the improved-coupling coordination degree (CCD) model were used to identify the spatial–temporal coordination development characteristics of livestock production-residential consumption-resource and environmental carrying capacity (LRRE). Furthermore, the spatial autocorrelation model (SAM) and gray model (GM) were used to analyze the spatial aggregation characteristics and future development trends of the CCDs of the LRRE in China. The findings show that the CCDs of the LRRE values in 31 Chinese provinces increased from 2005 to 2020, but no provinces reached a high coordination level. Specifically, the coordinated development level of LRRE is relatively high in the central, eastern and northeastern regions and relatively low in the western region. The spatial autocorrelation analysis confirmed that the high-high (H-H) aggregation areas were mainly distributed in the northeastern, eastern, and central regions, while low-high (L-H) agglomeration was distributed in the western region. This phenomenon is mainly attributed to the continuous expansion of the scale of livestock production in western China. Regions with relatively developed economies have more funds to invest in environmental protection projects. Using GM method, we find that the CCDs of LRRE in 31 provinces in China will increase from 2021 to 2030, and all provinces will reach the basic coordination level. However, most of the western regions will barely reach the basic coordination level. This result indicates that the low level of LRRE development in western China may be difficult to change in the short term. The level of coordinated LRRE development in the relatively developed eastern region is increasing. The spatial layout of China’s livestock industry should be appropriately adjusted, its expansion rate in the western region should be decreased, and the ecological environment of the areas bordering the western and central regions should be improved. These findings have practical implications for other large livestock production countries. Promoting the coordinated development of LRRE is also an important condition for agricultural transformation in developing countries, especially for improving the environment in key areas of the livestock industry.

Keywords