Marine Drugs (Nov 2020)

Proteoglycan from <i>Bacillus</i> sp. BS11 Inhibits the Inflammatory Response by Suppressing the MAPK and NF-κB Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages

  • Qingchi Wang,
  • Weixiang Liu,
  • Yang Yue,
  • Chaomin Sun,
  • Quanbin Zhang

DOI
https://doi.org/10.3390/md18120585
Journal volume & issue
Vol. 18, no. 12
p. 585

Abstract

Read online

Inflammation is involved in the pathogenesis of many debilitating diseases. Proteoglycan isolated from marine Bacillus sp. BS11 (EPS11) was shown to have anticancer activity, but its anti-inflammatory potential remains elusive. In the present study, the anti-inflammatory effects and mechanism of EPS11 were evaluated using a lipopolysaccharide (LPS)-induced RAW264.7 macrophage model. Biochemical characterization showed that the total sugar content and protein content of EPS11 were 49.5% and 30.2% respectively. EPS11 was composed of mannose, glucosamine, galactosamine, glucose, galactose, rhamnose, and glucuronic acid. Its molecular weight was determined to be 3.06 × 105 Da. The protein determination of EPS11 was also performed. EPS11 displayed a strong anti-inflammatory effect on LPS-stimulated RAW264.7 macrophages in vitro, which significantly suppressed inflammatory cytokines and mediators (such as NO, TNF-α, IL-6 and IL-1β, and COX-2). Western blot analysis indicated that EPS11 could downregulate the expression of many key proteins in mitogen-activated protein kinases (MAPKs) and transcription factor nuclear factor-κB (NF-κB) signaling pathways. In particular, EPS11 almost completely inhibited the expression of NF-κB P65, which indicated that EPS11 acted primarily on the NF-κB pathways. These findings offer new insights into the molecular mechanism underlying the anti-inflammatory effect of EPS11.

Keywords