Sensors (Jun 2024)

A Process Algebraic Approach to Predict and Control Uncertainty in Smart IoT Systems for Smart Cities Based on Permissible Probabilistic Equivalence

  • Junsup Song,
  • Dimitris Karagiannis,
  • Moonkun Lee

DOI
https://doi.org/10.3390/s24123881
Journal volume & issue
Vol. 24, no. 12
p. 3881

Abstract

Read online

Process algebra is one of the most suitable formal methods to model smart IoT systems for smart cities. Each IoT in the systems can be modeled as a process in algebra. In addition, the nondeterministic behavior of the systems can be predicted by defining probabilities on the choice operations in some algebra, such as PALOMA and PACSR. However, there are no practical mechanisms in algebra either to measure or control uncertainty caused by the nondeterministic behavior in terms of satisfiability of the system requirements. In our previous research, to overcome the limitation, a new process algebra called dTP-Calculus was presented to verify probabilistically the safety and security requirements of smart IoT systems: the nondeterministic behavior of the systems was defined and controlled by the static and dynamic probabilities. However, the approach required a strong assumption to handle the unsatisfied probabilistic requirements: enforcing an optimally arbitrary level of high-performance probability from the continuous range of the probability domain. In the paper, the assumption from the previous research is eliminated by defining the levels of probability from the discrete domain based on the notion of Permissible Process and System Equivalences so that satisfiability is incrementally enforced by both Permissible Process Enhancement in the process level and Permissible System Enhancement in the system level. In this way, the unsatisfied probabilistic requirements can be incrementally enforced with better-performing probabilities in the discrete steps until the final decision for satisfiability can be made. The SAVE tool suite has been developed on the ADOxx meta-modeling platform to demonstrate the effectiveness of the approach with a smart EMS (emergency medical service) system example, which is one of the most practical examples for smart cities. SAVE showed that the approach is very applicable to specify, analyze, verify, and especially, predict and control uncertainty or risks caused by the nondeterministic behavior of smart IoT systems. The approach based on dTP-Calculus and SAVE may be considered one of the most suitable formal methods and tools to model smart IoT systems for smart cities.

Keywords