Bioscience Journal (Feb 2022)

Effect of type of mature embryo explants and acetosyringone on agrobacterium-mediated transformation of moroccan durum wheat

  • Khadija Ahansal,
  • Rabha Abdelwahd,
  • Sripada Udupa,
  • Hanane Aadel,
  • Fatima Gaboun,
  • Mohammed Ibriz,
  • Driss Iraqi

DOI
https://doi.org/10.14393/BJ-v38n0a2022-54513
Journal volume & issue
Vol. 38
pp. e38007 – e38007

Abstract

Read online

Drought is one of the major constraints in durum wheat production in the Mediterranean Basin. In order to overcome this problem, the genetic transformation of durum wheat is one of the choices for improvement. However, the recalcitrance to Agrobacterium-mediated transformation in durum wheat (Triticum turgidum L.) is one of the factors limiting a successful genetic transformation. The aim of this study was to investigate the effect of explant type and acetosyringone concentration for the efficient Agrobacterium-mediated genetic transformation of three Moroccan durum wheat varieties (Amria, Chaoui, and Marouane). The mature embryos (intact, halved and pieces) were inoculated with Agrobacterium tumefaciens strain EHA101 harboring the binary vector pTF101.1 containing drought tolerance gene HVA1 from barley, and a selectable marker phosphinothricin (PPT) resistance (bar) gene. The explants were inoculated with A. tumefaciens (cell density OD650 at 0.7) at four different concentrations of acetosyringone (0, 100, 200, and 400 µM). The results showed that embryogenic calli from mature embryos showed higher regeneration and transformation than mature embryo halves and pieces. The integration of the transgene was confirmed by PCR amplification using primers specific to the bar gene, 2x35S promoter, and HVA1 gene. The transformation efficiency ranging from 0.33% to 2.33% was obtained in Amira variety using embryogenic calli and acetosyringone concentrations of 200 and 400 µM. The integration, as well as inheritance of the transgene, was confirmed by PCR amplification in T0 and T1 generations. This is the first report describing a genetic transformation of Moroccan durum wheat varieties via Agrobacterium tumefaciens.

Keywords