Journal of Educational Research in Mathematics (Aug 2021)

Preparing Students for the Fourth Industrial Revolution through Mathematical Learning: The Constructivist Learning Design

  • Ngan Hoe Lee,
  • June Lee,
  • Zi Yang Wong

DOI
https://doi.org/10.29275/jerm.2021.31.3.321
Journal volume & issue
Vol. 31, no. 3
pp. 321 – 356

Abstract

Read online

Characterised by increased automation and digitalisation of work processes, the Fourth Industrial Revolution (4IR) has displaced and redesigned many existing jobs, and will create new occupations that are currently non-existent. To prepare a future workforce that is adaptive amid a volatile employment landscape, schools should provide the necessary learning experiences to help students today develop transferrable competencies, which encompass deep conceptual understanding of domain-specific knowledge and 21st century competencies in the cognitive, intrapersonal, and interpersonal domains. In this paper, we study this possibility in the context of mathematics learning and propose a constructivist learning design (CLD) that affords students to engage in deeper learning processes. In the proposed CLD, students first work collaboratively to solve a complex problem targeting a math concept that they have yet to learn, before being engaged in instruction that builds upon their solutions in the teaching of the concept, and practices that reinforce these ideas. Testing CLD in mathematics learning at secondary level via a quasi-experimental design, we found out that (1) CLD facilitates deeper learning as it encouraged students to apply their cognitive, intrapersonal, and interpersonal competencies, and (2) CLD students (n=23) outperformed their Direct Instruction counterparts (n=18) on mathematical conceptual understanding and transfer. Overall, this study suggests that the CLD has the potential to cultivate competencies that allow students to transfer in novel situations, rendering it as a possible learning environment to better prepare students for the 4IR.

Keywords