Nanomaterials (May 2021)

Improved Device Distribution in High-Performance SiN<sub>x</sub> Resistive Random Access Memory via Arsenic Ion Implantation

  • Te-Jui Yen,
  • Albert Chin,
  • Vladimir Gritsenko

DOI
https://doi.org/10.3390/nano11061401
Journal volume & issue
Vol. 11, no. 6
p. 1401

Abstract

Read online

Large device variation is a fundamental challenge for resistive random access memory (RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-implanted SiNx device further exhibits excellent performance, which shows high stability and a large 1.73 × 103 resistance window at 85 °C retention for 104 s, and a large 103 resistance window after 105 cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance states were both analyzed as space-charge-limited conduction mechanism. From the simulated defect distribution in the SiNx layer, a microscopic model was established, and the formation and rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore, the reason for such high device performance can be attributed to the sufficient defects created by As+ implantation that leads to low forming and operation power.

Keywords