Scientific Reports (Jun 2022)

A photochemical-responsive nanoparticle boosts doxorubicin uptake to suppress breast cancer cell proliferation by apoptosis

  • Ying Zhang,
  • Kaiting Li,
  • Xiaoyu Han,
  • Qing Chen,
  • Lan Shao,
  • Dingqun Bai

DOI
https://doi.org/10.1038/s41598-022-14518-x
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 17

Abstract

Read online

Abstract In the course of chemotherapy for breast cancer, doxorubicin (DOX) is one of the most commonly prescribed agents. However, it has been recognized as clinically circumscribed on account of its poor selectivity and toxic reactions to normal tissues. Fortunately, the distinct merit of photochemical-responsive nanoparticle delivery systems to enhance cellular drugs uptake through localized concentration, adequate selective and minimizing systemic toxicity has aroused substantial interest recently. In this study, we synthesized photochemical-responsive nanoparticle by incorporating DOX, curcumin (CUR), and perfluorooctyl bromide (PFOB) into poly(lactic-co-glycolic acid) (PLGA) via double emulsification (DOX–CUR–PFOB–PLGA). The synthesized composite nanoparticles, which featured good ultrasound imaging, engendered photochemical activation for drug release when given laser irradiation. Cumulative release rates for DOX were 76.34%, and for CUR were 83.64%, respectively. Also, MCF-7 cells displayed significant intracellular DOX uptake and reactive oxygen species (ROS) levels, degraded cytoskeleton, and decreased cell growth and migration capacity. At the molecular level, cellular pAKT levels decreased, which resulted in downregulated HIF-1α and BAX/BCl-2 levels, leading to Caspase-3 activation and thus induction of apoptosis. Therefore, the photochemical-responsive nanoparticles possess the potential to elicit apoptosis in MCF-7 cells via enhanced DOX uptake.