Salud Pública de México (Jan 2023)

Current enzyme-mediated insecticide resistance status of Aedes aegypti populations from a dengue-endemic city in southern Mexico

  • Francisco Solís-Santoyo,
  • Américo D Rodríguez,
  • William Black,
  • Karla Saavedra-Rodríguez,
  • Daniel Sánchez-Guillén,
  • Alfredo Castillo-Vera,
  • Rebeca González-Gómez,
  • Alma Delia López-Solis,
  • Rosa Patricia Penilla-Navarro

DOI
https://doi.org/10.21149/13910
Journal volume & issue
Vol. 65, no. 1, ene-feb
pp. 19 – 27

Abstract

Read online

Objective. To identify the enzyme-mediated insecticide resistance in Aedes aegypti in Tapachula, Mexico. Materials and methods. Biochemical assays were undertaken to determine the enzyme levels in mosquitoes from 22 sites collected in 2018 and 2020 in Tapachula. Results of 2018 were correlated with the resistance to insecticides pub­lished. Results. Mosquitoes had higher levels than those of the susceptible strain in 2018 and 2020 respectively of α-esterases in 15 and 12 sites; β-esterases in 7 and 6 sites; glutathione-S-transferases in 11 and 19 sites; ρNPA-esterases in 21 and 17 sites; and cytochromes P450 in 20 and 22 sites. In mosquitoes of 2018, there was a moderate correlation between previously documented Malathion resistance ratios and the insensitive acetylcholinesterase (r=0.459, p= 0.03). Conclusions. The elevated enzyme levels found indicate its contribution to the resistance to pyrethroids and organo­phosphates already published in mosquitoes from Tapachula. Bioassays using enzyme inhibitors resulted in greater mor­tality, confirming that metabolism contributes to resistance.

Keywords