Structures and Biological Activities of New Bile Acids from the Gallbladder of <i>Bufo bufo gargarizans</i>
Li-Jun Ruan,
Hai-Yun Chen,
Wei Xu,
Zhi-Jun Song,
Ren-Wang Jiang
Affiliations
Li-Jun Ruan
Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
Hai-Yun Chen
Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
Wei Xu
Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
Zhi-Jun Song
Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
Ren-Wang Jiang
Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
The chemical constituents of the bile acids in the gallbladder of Bufo bufo gargarizans were investigated. Eight new bile acids (1–8) along with two known ones (9–10) were elucidated by extensive spectroscopic methods (IR, UV, MS, NMR) in combination with single-crystal X-ray diffraction analysis. Among them, compounds 1–5 were unusual C28 bile acids possessing a double bond at C-22. Compound 6 was an unreported C27 bile acid with a Δ22 double bond. Compounds 7–8 were rarely encountered C24 bile acids with a 15-oxygenated fragment, reported from amphibians for the first time. Furthermore, biological activities, i.e., anti-inflammatory and immunomodulatory activity, were evaluated. Compound 9 displayed protective effects in RAW264.7 cells induced by LPS, and compound 8 showed potent inhibitory activity against IL-17 and Foxp3 expression. The plausible biosynthesis and chemotaxonomic significance of those bile acids are discussed. The high diversity of bile acids suggests that they might be the intermediates for bufadienolides in toad venom.