Agriculture (Aug 2024)
Optimised Design and Simulation Analysis of a Double-Row Pneumatic Injection Seeding Device
Abstract
Stem mustard, the main raw material for pickled mustard tuber, is widely planted in Chongqing, China, and is an important local cash crop. Under the working conditions of sticky and wet soil in the Chongqing area, conventional furrow seeding has problems such as soil sticking to the furrow opener, poor mulching effect, etc. In this regard, this paper proposes the use of non-contact, soil-based, pneumatic shot seeding, in which seeds are shot into the soil to a predetermined depth by a high-speed air stream. The diameter of stem mustard seeds was found to be 1.33 mm, with a spherical rate of 95.32% using physical and mechanical properties. The high-speed camera test was used to determine the air pressure at the appropriate sowing depth, and the seed entry process was simulated by EDEM 2021 software, which analysed the movement process of the seed after entering the soil, and the structure of the seeder was designed based on the resulting test data. The structural parameters of the shot seeding device were analysed by a hydrodynamic simulation using Fluent 2022 R1 software and the following results were obtained: an outlet pipe diameter DC of 2 mm, mixing zone length H of 10 mm, mixing zone inlet diameter D of 15 mm, and steady-state gas flow rate of 80 m/s. Simulation seeding verification was conducted on the final determined structural parameters of the seeding device, and the simulation results showed that the seed velocity could reach 32.3 m/s. In actual experiments, it was found that when the vertical velocity of the seeds was greater than or equal to 26.59 m/s, the seeds could be completely and stably seeded into the soil. Therefore, the designed seeding device can meet the conditions of actual seeding experiments. In conclusion, this research offers a practical guideline for the rapid and precise sowing of stem mustard.
Keywords