Journal of Low Power Electronics and Applications (Jan 2024)

Design and Assessment of Hybrid MTJ/CMOS Circuits for In-Memory-Computation

  • Prashanth Barla,
  • Hemalatha Shivarama,
  • Ganesan Deepa,
  • Ujjwal Ujjwal

DOI
https://doi.org/10.3390/jlpea14010003
Journal volume & issue
Vol. 14, no. 1
p. 3

Abstract

Read online

Hybrid magnetic tunnel junction/complementary metal oxide semiconductor (MTJ/CMOS) circuits based on in-memory-computation (IMC) architecture is considered as the next-generation candidate for the digital integrated circuits. However, the energy consumption during the MTJ write process is a matter of concern in these hybrid circuits. In this regard, we have developed a novel write circuit for the contemporary three-terminal perpendicular-MTJs that works on the voltage-gated spin orbit torque (VG+SOT) switching mechanism to store the information in hybrid circuits for IMC architecture. Investigation of the novel write circuit reveals a remarkable reduction in the total energy consumption (and energy delay product) of 92.59% (95.81) and 92.28% (42.03%) than the conventional spin transfer torque (STT) and spin-Hall effect assisted STT (SHE+STT) write circuits, respectively. Further, we have developed all the hybrid logic gates followed by nonvolatile full adders (NV-FAs) using VG+SOT, STT, and SHE+STT MTJs. Simulation results show that with the VG+SOT NOR-OR, NAND-AND, XNOR-XOR, and NV-FA circuits, the reduction in the total power dissipation is 5.35% (4.27%), 5.62% (3.2%), 3.51% (2.02%), and 4.46% (2.93%) compared to STT (SHE+STT) MTJs respectively.

Keywords