BMC Genomics (Jul 2010)

Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (<it>Melampsora </it>spp.)

  • Tanguay Philippe,
  • Feau Nicolas,
  • Joly David L,
  • Hamelin Richard C

DOI
https://doi.org/10.1186/1471-2164-11-422
Journal volume & issue
Vol. 11, no. 1
p. 422

Abstract

Read online

Abstract Background Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors. Results We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome. Conclusion We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.