Antibiotics (Apr 2022)
TEM,CTX-M,SHV Genes in ESBL-Producing <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i> Isolated from Clinical Samples in a County Clinical Emergency Hospital Romania-Predominance of CTX-M-15
Abstract
Background: CTX-M betalactamases have shown a rapid spread in the recent years among Enterobacteriaceae and have become the most prevalent Extended Spectrum Beta-Lactamases (ESBLs) in many parts of the world. The introduction and dissemination of antibiotic-resistant genes limits options for treatment, increases mortality and morbidity in patients, and leads to longer hospitalization and expensive costs. We aimed to identify the beta-lactamases circulating encoded by the genes blaCTX-M-15, blaSHV-1 and blaTEM-1 in Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) strains. Furthermore, we established the associated resistance phenotypes among patients hospitalized in the Intensive Care Unit (ICU) from County Clinical Emergency Hospital of Craiova, Romania. Methods: A total of 46 non-duplicated bacterial strains (14 strains of E. coli and 32 strains of K. pneumoniae), which were resistant to ceftazidime (CAZ) and cefotaxime (CTX) by Kirby–Bauer disk diffusion method, were identified using the automated VITEK2 system. Detection of ESBL-encoding genes and other resistance genes was carried out by PCR. Results. E. coli strains were resistant to 3rd generation cephalosporins and moderately resistant to quinolones, whereas K. pneumoniae strains were resistant to penicillins, cephalosporins, and sulfamides, and moderately resistant to quinolones and carbapenems. Most E. coli strains harbored blaCTX-M-15 gene (13/14 strains), a single strain had the blaSHV-1 gene, but 11 strains harbored blaTEM-1 gene. The mcr-1 gene was not detected. We detected tet(A) gene in six strains and tet(B) in one strain. In K. pneumoniae strains we detected blaCTX-M-15 in 23 strains, blaSHV-1 in all strains and blaTEM-1 in 14 strains. The colistin resistance gene mcr-1 was not detected. The tetracycline gene tet(A) was detected in 11 strains, but the gene tet(B) was not detected in any strains. Conclusions. The development in antibiotic resistance highlights the importance of establishing policies to reduce antibiotic use and improving the national resistance surveillance system in order to create local antibiotic therapy guidelines.
Keywords