International Journal of Photoenergy (Jan 2015)

Regression Model to Predict Global Solar Irradiance in Malaysia

  • Hairuniza Ahmed Kutty,
  • Muhammad Hazim Masral,
  • Parvathy Rajendran

DOI
https://doi.org/10.1155/2015/347023
Journal volume & issue
Vol. 2015

Abstract

Read online

A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE), mean bias error (MBE), and the coefficient of determination (R2) with other models available from literature studies. Seven models based on single parameters (PM1 to PM7) and five multiple-parameter models (PM7 to PM12) are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.