Tumor Biology (Aug 2018)

miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance in vitro

  • Fabian M Troschel,
  • Nicolas Böhly,
  • Katrin Borrmann,
  • Timo Braun,
  • Alexander Schwickert,
  • Ludwig Kiesel,
  • Hans Theodor Eich,
  • Martin Götte,
  • Burkhard Greve

DOI
https://doi.org/10.1177/1010428318791887
Journal volume & issue
Vol. 40

Abstract

Read online

Effectively targeting cancer stem cells, a subpopulation of tumorigenic, aggressive, and radioresistant cells, holds therapeutic promise. However, the effects of the microRNA miR-142-3p, a small endogenous regulator of gene expression on breast cancer stem cells, have not been investigated. This study identifies the influence of miR-142-3p on mammary stemness properties and breast cancer radioresistance to establish its role in this setting. miR-142-3p precursor transfection was performed in MDA-MB-468, HCC1806, and MCF-7 cells, and stem cell markers CD44, CD133, ALDH1 activity and mammosphere formation were measured. β-catenin, the canonical wnt signaling effector protein, was quantified by Western blots and cell fluorescence assays both in miR-142-3p–overexpressing and anti–miR-142-3p–treated cells. Radiation response was investigated by colony formation assays. Levels of BRCA1, BRCA2, and Bod1 in miR-142-3p–overexpressing cells as well as expression of miR-142-3p, Bod1, KLF4, and Oct4 in sorted CD44 + /CD24 –/low cells were determined by quantitative polymerase chain reaction. miR-142-3p overexpression resulted in a strong decline in breast cancer stem cell characteristics with a decrease in CD44, CD133, ALDH1, Bod1, BRCA2, and mammosphere formation as well as reduced survival after irradiation. miR-142-3p expression was strongly reduced in sorted CD44 + /CD24 –/low stem cells, while Bod1, Oct4, and KLF4 were overexpressed. β-catenin levels strongly decreased after miR-142-3p overexpression, but not after anti–miR-142-3p treatment. We conclude that miR-142-3p downregulates cancer stem cell characteristics and radioresistance in breast cancer, mediated by a reduced role of β-catenin in miR-142-3p–overexpressing cells. miR-142-3p might therefore help to target cancer stem cells.