Climate Services (Aug 2017)
Impacts of 2°C global warming on primary production and soil carbon storage capacity at pan-European level
Abstract
Atmospheric CO2 has been dramatically increasing since beginning of the industrial time (i.e. 1860), being one of the main driver for climate change at regional and global level. The change in CO2 concentration in the atmosphere, together with that of temperature, precipitation and/or so radiation, can influence the biogeochemical cycles in all ecosystems. In this study, we investigate the combined effect of CO2 concentration and six climate variables on carbon uptake, i.e., gross primary production (GPP) and carbon storage, i.e, soil carbon (SoilC) in terrestrial biosphere by using the Community Land Model (CLM vers. 4.5) and evaluate the model’s results against available observation data. We also analysed the change in carbon uptake and storage under a 2°C global mean warming. Results show that the model performed reasonably well for GPP and SoilC at pan-European scale. We also found a positive correlation between GPP, precipitation and surface wind, and a negative correlation between GPP and surface downwelling longwave radiation (rlds). Under a 2°C global warming, GPP and SoilC show an increase, an average, of about 20%, and 5% at pan-European scale, respectively. However, our results indicate that CLM4.5 may need improvements particularly in carbon-nitrogen interaction and carbon accumulation in soil.
Keywords