Synergism between B and Nb Improves Fire Resistance in Microalloyed Steels
Pedro Pires Ferreira,
Felipe Moreno Carvalho,
Edwan Anderson Ariza-Echeverri,
Pedro Meirelles Delfino,
Luiz Felipe Bauri,
Andrei Marx Ferreira,
Ana Paola Braga,
Luiz Tadeu Fernandes Eleno,
Hélio Goldenstein,
André Paulo Tschiptschin
Affiliations
Pedro Pires Ferreira
Computational Materials Science Group (ComputEEL/MatSci), Escola de Engenharia de Lorena, Universidade de São Paulo, DEMAR, Lorena 12602-810, SP, Brazil
Felipe Moreno Carvalho
Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo 05508-901, SP, Brazil
Edwan Anderson Ariza-Echeverri
Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo 01000-000, SP, Brazil
Pedro Meirelles Delfino
Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo 01000-000, SP, Brazil
Luiz Felipe Bauri
Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo 01000-000, SP, Brazil
Andrei Marx Ferreira
Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo 01000-000, SP, Brazil
Ana Paola Braga
Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo 05508-901, SP, Brazil
Luiz Tadeu Fernandes Eleno
Computational Materials Science Group (ComputEEL/MatSci), Escola de Engenharia de Lorena, Universidade de São Paulo, DEMAR, Lorena 12602-810, SP, Brazil
Hélio Goldenstein
Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo 01000-000, SP, Brazil
André Paulo Tschiptschin
Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, São Paulo 01000-000, SP, Brazil
The long exposure of structural components to high temperatures (above 600 °C) negatively changes their mechanical properties, severely compromising the structural capacity of buildings and other structures in which safety is a primary concern. Developing new cheaper fire-resistant steels with better mechanical and thermal performances represents a challenging, cutting-edge materials science and engineering research topic. Alloying elements such as Nb and Mo are generally used to improve the strength at both room and high temperatures due to the formation of precipitates and harder microconstituents. This study shows that adding small amounts of boron in Nb-microalloyed fire-resistant steels may be crucial in maintaining mechanical properties at high temperatures. The widely used 66% yield-strength criteria for fire resistance was achieved at ≈574 °C for the B-added alloys. In contrast, for those without boron, this value reached ≈460 °C, representing a remarkable boron-induced mechanical strengthening enhancement. First-principles quantum mechanics calculations demonstrate that boron additions can lower 11.7% of the vacancy formation energy compared to pure ferrite. Furthermore, for Nb-added steels, the reduction in the vacancy formation energy may reach 33.2%, suggesting that the boron-niobium combination could act as an effective pinning-based steel-strengthening agent due to the formation of B-induced higher-density vacancy-related crystalline defects, as well as other well-known steel strengthening mechanisms reported in the literature. Adding boron and niobium may, therefore, be essential in designing better structural alloys.