Karpatsʹkì Matematičnì Publìkacìï (Jun 2021)

Some results concerning localization property of generalized Herz, Herz-type Besov spaces and Herz-type Triebel-Lizorkin spaces

  • A. Djeriou,
  • R. Heraiz

DOI
https://doi.org/10.15330/cmp.13.1.217-228
Journal volume & issue
Vol. 13, no. 1
pp. 217 – 228

Abstract

Read online

In this paper, based on generalized Herz-type function spaces $\dot{K}_{q}^{p}(\theta)$ were introduced by Y. Komori and K. Matsuoka in 2009, we define Herz-type Besov spaces $\dot{K}_{q}^{p}B_{\beta }^{s}(\theta)$ and Herz-type Triebel-Lizorkin spaces $\dot{K}_{q}^{p}F_{\beta }^{s}(\theta)$, which cover the Besov spaces and the Triebel-Lizorkin spaces in the homogeneous case, where $\theta=\left\{\theta(k)\right\} _{k\in\mathbb{Z}}$ is a sequence of non-negative numbers $\theta(k)$ such that \begin{equation*} C^{-1}2^{\delta (k-j)}\leq \frac{\theta(k)}{\theta(j)} \leq C2^{\alpha (k-j)},\quad k>j, \end{equation*} for some $C\geq 1$ ($\alpha$ and $\delta $ are numbers in $\mathbb{R}$). Further, under the condition mentioned above on ${\theta }$, we prove that $\dot{K}_{q}^{p}\left({\theta }\right)$ and $\dot{K}_{q}^{p}B_{\beta }^{s}\left({\theta }\right)$ are localizable in the $\ell _{q}$-norm for $p=q$, and $\dot{K}_{q}^{p}F_{\beta }^{s}\left({\theta }\right)$ is localizable in the $\ell _{q}$-norm, i.e. there exists $\varphi \in \mathcal{D}({\mathbb{R}}^{n})$ satisfying $\sum_{k\in \mathbb{Z}^{n}}\varphi \left( x-k\right) =1$, for any $x\in \mathbb{R}^{n}$, such that \begin{equation*} \left\Vert f|E\right\Vert \approx \Big(\underset{k\in \mathbb{Z}^{n}}{\sum }\left\Vert \varphi (\cdot-k)\cdot f|E\right\Vert ^{q}\Big)^{1/q}. \end{equation*} Results presented in this paper improve and generalize some known corresponding results in some function spaces.

Keywords