PLoS ONE (Jan 2016)

Coadministration of the FNIII14 Peptide Synergistically Augments the Anti-Cancer Activity of Chemotherapeutic Drugs by Activating Pro-Apoptotic Bim.

  • Takuya Iyoda,
  • Yumi Nagamine,
  • Yoshitomi Nakane,
  • Yuya Tokita,
  • Shougo Akari,
  • Kazuki Otsuka,
  • Motomichi Fujita,
  • Keisuke Itagaki,
  • You-Ichi Takizawa,
  • Hiroaki Orita,
  • Toshiyuki Owaki,
  • Jyunichi Taira,
  • Ryo Hayashi,
  • Hiroaki Kodama,
  • Fumio Fukai

DOI
https://doi.org/10.1371/journal.pone.0162525
Journal volume & issue
Vol. 11, no. 9
p. e0162525

Abstract

Read online

The acquisition of drug resistance mediated by the interaction of tumor cells with the extracellular matrix (ECM), commonly referred to as cell adhesion-mediated drug resistance (CAM-DR), has been observed not only in hematopoietic tumor cells but also in solid tumor cells. We have previously demonstrated that a 22-mer peptide derived from fibronectin, FNIII14, can inhibit cell adhesion through the inactivation of β1 integrin; when coadministered with cytarabine, FNIII14 completely eradicates acute myelogenous leukemia by suppressing CAM-DR. In this study, we show that our FNIII14 peptide also enhances chemotherapy efficacy in solid tumors. Coadministration of FNIII14 synergistically enhances the cytotoxicity of doxorubicin and aclarubicin in mammary tumor and melanoma cells, respectively. The solid tumor cell chemosensitization induced by FNIII14 is dependent upon the upregulation and activation of the pro-apoptotic protein, Bim. Furthermore, the metastasis of tumor cells derived from ventrally transplanted mammary tumor grafts is suppressed by the coadministration of FNIII14 and doxorubicin. These results suggest that the coadministration of our FNIII14 peptide with chemotherapy could achieve efficient solid tumor eradication by increasing chemosensitivity and decreasing metastasis. The major causes of tumor recurrence are the existence of chemotherapy-resistant primary tumor cells and the establishment of secondary metastatic lesions. As such, coadministering FNIII14 with anti-cancer drugs could provide a promising new approach to improve the prognosis of patients with solid tumors.